LESSON 7 - APPLICATION EXERCISE 1

(Bring a 3.5" computer disk to class)

We'll use an Excel spreadsheet to model horizontal and vertical fights. Which fighter will win?

Reading:

"The Problem of the Pullout" Handout

Problems/Questions:

Work on Problem Set 2

Objectives:

- 7-1 Understand how Euler's method can be used to model aircraft performance.
- 7-2 Be able to compare an aircraft's performance in a level turn versus a vertical turn.

LESSON 8 – APPLICATION EXERCISE 1 CONTINUED

(Bring a 3.5" computer disk to class)

OK, so modeling something this complex isn't that quick and easy. You'll now get a chance to finish up your first application exercise.

Reading:

"The Problem of the Pullout" Handout

Problems/Questions:

Work on Problem Set 2 and Application Exercise 1

Objectives:

- 8-1 Understand how Euler's method can be used to model aircraft performance.
- 8-2 Be able to compare an aircraft's performance in a level turn versus a vertical turn.

Last Time: Entering and leaving a turning fight

Last-Ditch Options

Flat/Rolling Scissors Neutral Low-Aspect BFM

Today: Modeling a level turn (7); Modeling a vertical turn (8)

Equations: See last page of these notes

Discuss the Euler method of iterative calculation. Use an example of a ball dropping in a resistive medium.

For this simple case, let D = 1 kg/m, m = 1 kg, and $g = 10 \text{ m/s}^2$.

From kinematics, $y = y_0 + v_{y0}\Delta t + \frac{1}{2} a_y(\Delta t)^2$, but Δt is small so $(\Delta t)^2$ is negligible and the position equation becomes $y = y_0 + v_{y0}\Delta t$. The velocity equation is simply $v = v_0 + a_y\Delta t$, and the acceleration equation comes from the free body diagram. To solve this, we only need two initial condiditons: the position and velocity at time t = 0.

Step	Time	Position	Velocity	Acceleration
0	0.0	0	0	$-g + DV_0^2/m = -10 + 0 = -10$
1	0.1	$y_0 + v_{y0}\Delta t = 0 + 0 = 0$	$v_0 + a_{y0}\Delta t = 0 + (-10)(0.1) = -1$	$-g+DV_1^2/m=-10+(1)(1)/(1)=-9$
2	0.2	$y_1 + v_{y1}\Delta t = 0 + (-1)(.1) =1$	$v_1 + a_{y1}\Delta t = -1 + (-9)(.1) = -1.9$	$-g+DV_1^2/m=-10+(1)(3.61)/1=-6.39$
				2
n	$n(\Delta T)$	$y_{n-1} + v_{yn-1}\Delta t$	$v_{1-1} + a_{yn-1}\Delta t$	$-g+DV_n^2/m$

Show "Level Turn.xls" on the screen. Discuss the blocks and how the specific excess energy is calculated.

PUT THESE UNIT CONVERSIONS ON THE BOARD:

1kt = 0.51479 m/s 1m = 3.28 ft $g = 9.81 \text{ m/s}^2$ timestep = 0.1s 1NM = 6076 ft 1hr = 3600 s Speed of sound at 10,000 ft = 328.7 m/s

Formulae for level turn:

Time = (oldtime)+(timestep)

Airspeed = (old airspeed) + (timestep)(acceleration)

Mach = (airspeed)(m/s to kt conversion)(mach/328.7 m/s)

 $Rate = (load)(g)(deg/rad\ conversion)/[(airspeed)(kt\ to\ m/s\ conversion)$

Avg Rate = (Angle)/(time)

Angle = (old angle) + (timestep)(rate)

Radius = $[(airspeed)(m/s to kt conversion)]^2(ft to m conversion/[(load)(g)])$

Acceleration = (g)(Ps)(sec to hr conversion)/[(airspeed)(m/s to kt conversion)(ft to NM conversion)]

Specific energy = (airspeed)²[(m/s to kt conversion)²(2g)⁻¹(ft to m conversion] + altitude